
IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. XX, No. XX, 2017

Translations of Embedded Theorems in

Z Specifications

Abstract—This paper discusses our proposal on how to embed
theorems in Z specifications. One reason behind this proposal is to
ease Z users in writing theorems directly in their Z specifications.
Another reason is not to overwhelm Z users in learning other
language, which in this case is SAL language. In doing so, we need
to inform Z2SAL programmers how to translate these embedded
theorems into equivalence theorems in SAL specifications. Based
on our experiments, Z2SAL is able to translate these kind of
theorems and SAL model checker is also able to model check SAL
specifications with theorems that are written directly in the Z
specifications.

Keywords--Z; theorems; Z2SAL; SAL model checker.

I. INTRODUCTION

Previously, a user added several theorems to the generated
SAL file in order to allow the system, which is modelled by the
Z specification, verifies these theorems. By doing so, this user
should know how the SAL language presents this theorem,
which might be a problem to learn other language, the SAL
language, especially a user who just knows Z language.

Then, we had an idea, how if the user specifies the theorem
inside the Z specification. We proposed this idea to Z2SAL
programmers and the method how to achieve this goal. Z2SAL
programmers accept our proposal and follow our method. As a
result, the current Z2SAL can translate either a Z specification
or a Z specification added with theorems.

Following is brief descriptions about Z notation, Z2SAL,
SAL model checker, and Model Checking. For further
explanation, interested readers can refer to paper, especially the
ones in [1,2,3,4].

A. Z Notation

Z is a notational convention for logic and simple
mathematics. Z is a model based notation, which has states and
operations. As mentioned earlier, it is a notation, not a method.
Furthermore, Z is a not tool either, but several tools
implementing Z are available, tough is not many. Z is also not
an executable since it is not a programming language. Z is able
to express concurrency and objects after it has been extended. Z
is usually used to design a specification of a system. Thus, this
specification tells us what the system can do, not how to do
something.

B. Z2SAL

Z2SAL is a translation tool built by researchers from the
University of Sheffield, United Kingdom. They John Derrick,
Siobhan North, and Anthony Simons. As its name, it can do
translations on its input file which is a Z specification to its
output which is a SAL specification representing that Z
specification. Sometimes, Z2SAL also generates several context
files, which are mathematical toolkits, needed to model check
that SAL file later with SAL model checker. Mathematical
toolkits built for Z2SAL are rich enough to represent Z notation.

In addition to a translation tool, Z2SAL can also do
refinement. Achieving this function, Z2SAL needs two Z
specification files.

C. SAL Model Checker

SAL model checker is a tool that can model check systems.
It can accept inputs of SAL specifications. SAL, which stands
for symbolic analysis laboratory, previously is a collaboration
research of two famous universities which then this tool is
developed further at SRI. SAL model checker has ability to do
symbolic model checking with command smc. A symbolic
model checker supports LTL (Linear-time Temporal Logic) and
CTL (Computation Tree Logic) formulas. SAL model checker
can also do bounded model checking with command bmc. This
bounded model checker supports only LTL formulas.

D. Model Checker

Model checker is one method of automatic formal
verification. This method consists of three steps: modelling,
formalization of properties, and verification [5]. Modelling is
performed using one of formal specification languages. Formal
logics, which are usually in temporal logics form, are used to do
the second step. The third step is to check whether the model
satisfies properties/ theorems given in temporal logics form.

As mentioned above, formal logics in model checker is
formed from temporal logics. These temporal logic, which are
used in theorems, are to specify concurrent systems. This logic
can describe events in ordered time. With this logic, a formula
can be true in some states and false in other states dynamically.

Based on time, the temporal logic is classified into two: the
linear time logic (LTL), and the branching time logic (CTL). In
LTL, a time is a set of paths, where a path is a sequence of time
instances. Meanwhile, in CTL, a time is represented as a tree,
rooted at the present moment and branching out into the future.

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. XX, No. XX, 2017

SAL model checker can support both of these logics, please
check the above description.

In this paper, we discuss briefly this proposal. A further
discussion can be read in [6]. We begin the discussion with the
current method, which is adding theorems in the generated SAL
specification. The flow of the following section begins with the
examples of theorems. Then, we do manual verification on these
theorems. Finally, we use SAL model checker to do the
verification.

II. ADDING THEOREMS IN THE GENERATED SAL

A. Examples

At the end of our SAL file of club.tex (can be read in
[6] subsection 2.2.4, several LTL theorems and CTL theorems
were added as presented in [6] subsection 3.1. We write again
here those theorems as follows:

 th1: THEOREM State |- G (NOT (members
= set {PERSON;} ! full));

It is not the case such that a club ever gets full. G means
always.

 th2: THEOREM State |- G (NOT(set
{PERSON;}! empty?(members)));

It is not the case such that the club ever be empty.

 th3a: THEOREM State |- G (EXISTS(m, n:
PERSON): m /= n);

There exists at least one instance of members, who is
different from other members. EXISTS represents an
existential statement, whereas /= is an operator to ask
whether to variables are not the same.

 th3b: THEOREM State |- G
(NOT(EXISTS(m, n: PERSON): m /= n));

It is not the case such that there is a member of
members, who is different with others.

 th4a: THEOREM State |- G (FORALL(m, n:
PERSON): m /= n);

All members are different. FORALL represents a
universal statement.

 th4b: THEOREM State |- G
(NOT(FORALL(m, n: PERSON): m /= n));

It is not the case such that all members are different.

The next subsection will discuss about verifications of those
theorems.

B. Manual Verification

Before these theorems were verified by using SAL model
checker, they were investigated manually. Following is the
discussion of this manual verification.

For the first theorem, th1, it should be invalid since there is
an operation JoinOk that can add a member to this club.
Furthermore, this operation only stops if the maximum number
of members is reached.

For th2, it is also invalid since in the initialization of this
system, this club has no member. In other words, this system has
ever been empty, especially in the initialization stage.

For th3a, it will be proved. The operation performed by
JoinOk schema will only add a new member who has not been
available in this club.

For th3b, it is the opposite of th3a theorem. Thus it is
invalid.

th4a is also invalid due to the assignment of no members
for this club in the initial state. Thus, in the initialization state,
all members are the same, which are empty.

The last theorem, th4b, is the opposite of theorem th4a.
Thus, it will be proved or it is valid.

C. Verification by SAL Model Checker

Based on these prior knowledge, SAL model checker was
run on this generated SAL file to verify those theorems. The
summary of that verification is given as follows and they are the
same as our expected results:

The assertion 'th1' located at [Context:
club, line(55), column(0)] is invalid.

The assertion 'th2' located at [Context:
club, line(58), column(0)] is invalid.

The assertion 'th3a' located at [Context:
club, line(61), column(0)] is valid.

The assertion 'th3b' located at [Context:
club, line(64), column(0)] is invalid.

The assertion 'th4a' located at [Context:
club, line(67), column(0)] is invalid.

The assertion 'th4b' located at [Context:
club, line(70), column(0)] is valid.

Many other examples given on other sections in [6] show this
practice. Let us now move to the next discussion on embedded
theorems.

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. XX, No. XX, 2017

III. EMBEDDED THEOREMS ON Z SPECIFICATIONS

Duke and Smith in [7] mention that properties of a system
such as liveness can be evaluated by presenting a specification
of a system using Z notation. There are two alternatives to
express such properties.

The first alternative is to express them using Z notation. The
second one is to express them using temporal logic notation. One
benefit of using the second alternative is predicates are more
readable and shorter than the former.

Supporting that second alternative, King [8] added tags for
presenting several temporal logics to his Object Z package.
Currently there are three tags available, as follows:

 : this symbol means always

 : this symbol means next

 : this symbol means eventually

Based on their meanings, we assume those three tags represent
LTL formulas.

Regardless of research found in [2,3], only fewer tools that
support embedded temporal theorems in Z specifications.
Therefore, our research aims to propose extensions to Z standard
notation adapted by Z2SAL to also include King’s temporal
logic.

In our proposal [6], syntax to define the embedded theorems
is adapted from Object-Z Concrete Syntax [9]. This syntax is an
extension to syntax of Spivey [10]. Based on discussion on [6],
the theorems are defined in the predicate part of schemas.

We propose several steps of how to translate embedded
properties on a Z specification [6]. The translation of these
properties will follow Z2SAL’s form of theorems in SAL
specifications which have a form as follows:

th i: THEOREM name_of_module |-
temporal_logics;

Our steps are:

 th is an identifier, so it is possible to modify this
identifier’s name to other identifier’s name.

 Every th is followed by i. An i is a non-zero natural
number starting from 1, which plays as an index. This i
number will be given for every line of predicates
containing temporal logics which begins with 1 and this
number will be incremented by 1 for each successor of
such a line. The i is also part of the user identifier, so it
can be modified to other identifier.

 THEOREM is a SAL keyword, but it is not case-sensitive.

 name_of_module is taken from the name of the SAL's
module and is case-sensitive.

As said in [6], King’s style for representing temporal logics
are different with temporal logics of SAL specifications.
However, there are equivalences between both syntaxes. The
table has been given in [6] which shows these equivalences
(please refer to Table 3.1). From the table, SAL has G for
representing always, X for representing next, and F is for
eventually.

For representing U(p,q), which is not supported in King’s
syntax, we have given the equivalent notation for U(p,q) in
[6]. U(p,q) means that p holds until q holds on a particular path
[4].

The next discussion gives one example of schema that
represents a theorem from our experiments in [6] relating to this
proposed translation method. The example is taken from [10]
namely Birthday Book Specification.

As mention in [6], the property that need to be proven is “If
it is known the birthday of a person then the person should be
recognized”. This schema has a predicate part that represent that
property. It begins with a universal statement, thus for all person
in this birthday book (we take their names), there will exist one
unique date of birth for each person (it is represented by an
existential statement). The schema that is defined is as follows
[6]:

 WhichDate

ΞBirthdayBook

∀n: NAME ⦁ ∃d: DATE ⦁

 (d = birthday(n) ⇒ n ∈ known)

After the complete specification is translated by Z2SAL, the
generated SAL specification for the above schema is as follows:

Figure 1 A SAL translation for the above embedded theorem

This theorem in Fig. 1 is VALID, in other word; it is satisfied by
the system. The command that is given to SAL model checker
to verify the above embedded theorem is as below:

$ sal-smc birthdaybook_templog

We specify a new theorem for this paper that we also
embedded in the same Z specification as above. Thus theorem
in not available in [6]. This theorem represents “if there is a
birthday date for someone, it means that this person is already in
the system which means that the name is not a new name. In

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. XX, No. XX, 2017

other word, only one name is recorded for one date. The theorem
is as follows:

 JustOnePerson

ΞBirthdaybook

newName?: NAME

∀n: NAME⦁ ∃d:DATE⦁

(d = birthday(n) ⇒ newName? = n)

Z2SAL generates a SAL theorem as follows:

th2 : theorem State |- (FORALL (q__4 : NAME)
: (EXISTS (q__5 : DATE) : G (q__5 =
birthday(q__4) => newName? = q__4)));

We model check the SAL specification then. The command
given to SAL model checker and results are as follows:

$ sal-smc birthdaybook_templog

Summary:

The assertion 'th1' located at [Context:
birthdaybook_templog, line(71), column(2)]
is valid.

The assertion 'th2' located at [Context:
birthdaybook_templog, line(74), column(2)]
is valid.

birthdaybook_templog is the name of the context file
which represents the name of SAL file. Thus, we use symbolic
model checker of SAL model checker and we use LTL formulas.
The first theorem uses a LTL operator, namely G. This operator
means its argument is always true. It is similar to the second
theorem; this theorem uses also the same LTL operator, G.

Based on result given by model checking the second
theorem, we could assume that this birthday book system only
specifies one date of birthday for one person. Thus, it does not
support if there are many persons have the same birthday date.
This behavior is quite surprising, it is not usual.

IV. RESULT AND DISCUSSION

Our complete results from experiments in this proposal are
given in [6]. Interested readers are encouraged to read that paper.
We could obtain the translations of theorems, which are
embedded in Z specifications. Z2SAL are able to perform

translation over these embedded theorems. We also could model
check the generated SAL specifications using SAL model
checker. Thus, SAL model checker seems that it does not
differentiate the theorems, which are defined directly in the Z
specification from the ones, which are defined in the SAL
specification. For the discussion about the last paragraph in the
previous section, to allow shared birthday date among person,
the Z specification seems to be revised.

V. CONCLUSION

There are six experiments which have been conducted in our
research and written in [6]. We reported again one of those
experiments in this paper. In addition to this experiment, we add
our new example for this paper. Thus, there are two experiments
in this paper. Based on these experiments, we conclude that
Z2SAL supports embedded theorems in Z specifications. It is
because Z2SAL can translate these theorems into the
equivalence theorems in SAL specifications. These theorems
can also be verified by SAL model checker. Furthermore, many
persons who share the same birthday date could be assigned as
future research.

ACKNOWLEDGMENT

We want to thank John Derrick, Siobhan North and Anthony
Simons who allow us use their Z2SAL. Furthermore, our thanks
also are for discussion on Z2SAL, Z and SAL with those three
researchers.

REFERENCES

[1] J. Jacky, The Way of Z: Practical Programming for Formal Methods.
Cambridge University Press, 1997.

[2] J. Derrick, S. North, and T. Simons, “Issues in Implementing a Model
Checker for Z,” in Formal Methods and Software Engineering, 2006, pp.
678–696.

[3] L. de Moura, S. Owre, and N. Shankar, “The SAL Language Manual,”
2019.

[4] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2004.

[5] R. Pelanek, “Reduction and Abstraction Techniques for Model Checking,”
Masaryk University, 2006.

[6] M. U. Siregar, “Support for Model Checking Z Specifications,” The
University of Sheffield, 2016.

[7] R. Duke and G. Smith, “Temporal Logic and Z Specification,” Aust.
Comput. J., vol. 21, no. 2, pp. 62–66, 1989.

[8] P. King, “Printing Z and Object_Z Latex Documents,” Dep. Comput. Sci.
Univ. Queensl., vol. 393, pp. 404–410, 1990.

[9] R. Duke, P. King, G. Rose, and G. Smith, “The Object-Z Specification
Language: Version 1,” 1991.

[10] J. M. Spivey, The Z Notation. Prentice Hall New York, 1989.

