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Translations of Embedded Theorems in  

Z Specifications 
 

 
 
 

Abstract—This paper discusses our proposal on how to embed 
theorems in Z specifications. One reason behind this proposal is to 
ease Z users in writing theorems directly in their Z specifications. 
Another reason is not to overwhelm Z users in learning other 
language, which in this case is SAL language. In doing so, we need 
to inform Z2SAL programmers how to translate these embedded 
theorems into equivalence theorems in SAL specifications. Based 
on our experiments, Z2SAL is able to translate these kind of 
theorems and SAL model checker is also able to model check SAL 
specifications with theorems that are written directly in the Z 
specifications. 
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I.  INTRODUCTION 

Previously, a user added several theorems to the generated 
SAL file in order to allow the system, which is modelled by the 
Z specification, verifies these theorems. By doing so, this user 
should know how the SAL language presents this theorem, 
which might be a problem to learn other language, the SAL 
language, especially a user who just knows Z language. 

Then, we had an idea, how if the user specifies the theorem 
inside the Z specification. We proposed this idea to Z2SAL 
programmers and the method how to achieve this goal. Z2SAL 
programmers accept our proposal and follow our method. As a 
result, the current Z2SAL can translate either a Z specification 
or a Z specification added with theorems.  

Following is brief descriptions about Z notation, Z2SAL, 
SAL model checker, and Model Checking.  For further 
explanation, interested readers can refer to paper, especially the 
ones in [1,2,3,4]. 

 

A. Z Notation 

Z is a notational convention for logic and simple 
mathematics.  Z is a model based notation, which has states and 
operations. As mentioned earlier, it is a notation, not a method. 
Furthermore, Z is a not tool either, but several tools 
implementing Z are available, tough is not many. Z is also not 
an executable since it is not a programming language.  Z is able 
to express concurrency and objects after it has been extended. Z 
is usually used to design a specification of a system. Thus, this 
specification tells us what the system can do, not how to do 
something. 

 

B. Z2SAL 

Z2SAL is a translation tool built by researchers from the 
University of Sheffield, United Kingdom. They John Derrick, 
Siobhan North, and Anthony Simons. As its name, it can do 
translations on its input file which is a Z specification to its 
output which is a SAL specification representing that Z 
specification. Sometimes, Z2SAL also generates several context 
files, which are mathematical toolkits, needed to model check 
that SAL file later with SAL model checker. Mathematical 
toolkits built for Z2SAL are rich enough to represent Z notation.  

In addition to a translation tool, Z2SAL can also do 
refinement. Achieving this function, Z2SAL needs two Z 
specification files.  

 

C. SAL Model Checker 

SAL model checker is a tool that can model check systems. 
It can accept inputs of SAL specifications. SAL, which stands 
for symbolic analysis laboratory, previously is a collaboration 
research of two famous universities which then this tool is 
developed further at SRI. SAL model checker has ability to do 
symbolic model checking with command smc. A symbolic 
model checker supports LTL (Linear-time Temporal Logic) and 
CTL (Computation Tree Logic) formulas. SAL model checker 
can also do bounded model checking with command bmc.  This 
bounded model checker supports only LTL formulas. 

 

D.   Model Checker 

Model checker is one method of automatic formal 
verification. This method consists of three steps: modelling, 
formalization of properties, and verification [5]. Modelling is 
performed using one of formal specification languages. Formal 
logics, which are usually in temporal logics form, are used to do 
the second step.  The third step is to check whether the model 
satisfies properties/ theorems given in temporal logics form. 

As mentioned above, formal logics in model checker is 
formed from temporal logics. These temporal logic, which are  
used in theorems, are to specify concurrent systems. This logic 
can describe events in ordered time. With this logic, a formula 
can be true in some states and false in other states dynamically. 

Based on time, the temporal logic is classified into two: the 
linear time logic (LTL), and the branching time logic (CTL). In 
LTL, a time is a set of paths, where a path is a sequence of time 
instances. Meanwhile, in CTL, a time is represented as a tree, 
rooted at the present moment and branching out into the future. 
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SAL model checker can support both of these logics, please 
check the above description. 

In this paper, we discuss briefly this proposal. A further 
discussion can be read in [6]. We begin the discussion with the 
current method, which is adding theorems in the generated SAL 
specification. The flow of the following section begins with the 
examples of theorems. Then, we do manual verification on these 
theorems. Finally, we use SAL model checker to do the 
verification. 

 

II. ADDING THEOREMS IN THE GENERATED SAL 

A. Examples 

At the end of our SAL file of club.tex (can be read in 
[6] subsection 2.2.4, several LTL theorems and CTL theorems 
were added as presented in [6] subsection 3.1. We write again 
here those theorems as follows: 

 

 th1: THEOREM State |- G (NOT (members 
= set {PERSON;} ! full)); 

It is not the case such that a club ever gets full. G means 
always. 

 

 th2: THEOREM State |- G (NOT(set 
{PERSON;}! empty?(members))); 

It is not the case such that the club ever be empty. 

 

 th3a: THEOREM State |- G (EXISTS(m, n: 
PERSON): m /= n); 

There exists at least one instance of members, who is 
different from other members. EXISTS represents an 
existential statement, whereas /= is an operator to ask 
whether to variables are not the same. 

 

 th3b: THEOREM State |- G 
(NOT(EXISTS(m, n: PERSON): m /= n)); 

It is not the case such that there is a member of 
members, who is different with others. 

 th4a: THEOREM State |- G (FORALL(m, n: 
PERSON): m /= n); 

All members are different. FORALL represents a 
universal statement. 

 

 th4b: THEOREM State |- G 
(NOT(FORALL(m, n: PERSON): m /= n)); 

It is not the case such that all members are different. 

 

The next subsection will discuss about verifications of those 
theorems. 

 

B. Manual Verification 

Before these theorems were verified by using SAL model 
checker, they were investigated manually. Following is the 
discussion of this manual verification. 

For the first theorem, th1, it should be invalid since there is 
an operation JoinOk that can add a member to this club. 
Furthermore, this operation only stops if the maximum number 
of members is reached.  

For th2, it is also invalid since in the initialization of this 
system, this club has no member. In other words, this system has 
ever been empty, especially in the initialization stage.  

For th3a, it will be proved. The operation performed by 
JoinOk schema will only add a new member who has not been 
available in this club.  

For th3b, it is the opposite of th3a theorem. Thus it is 
invalid.  

th4a is also invalid due to the assignment of no members 
for this club in the initial state. Thus, in the initialization state, 
all members are the same, which are empty.  

The last theorem, th4b, is the opposite of theorem th4a. 
Thus, it will be proved or it is valid. 

 

C. Verification by SAL Model Checker 

Based on these prior knowledge, SAL model checker was 
run on this generated SAL file to verify those theorems. The 
summary of that verification is given as follows and they are the 
same as our expected results: 

 

The assertion 'th1' located at [Context: 
club, line(55), column(0)] is invalid. 

The assertion 'th2' located at [Context: 
club, line(58), column(0)] is invalid. 

The assertion 'th3a' located at [Context: 
club, line(61), column(0)] is valid. 

The assertion 'th3b' located at [Context: 
club, line(64), column(0)] is invalid. 

The assertion 'th4a' located at [Context: 
club, line(67), column(0)] is invalid. 

The assertion 'th4b' located at [Context: 
club, line(70), column(0)] is valid. 

 

Many other examples given on other sections in [6] show this 
practice. Let us now move to the next discussion on embedded 
theorems. 
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III. EMBEDDED THEOREMS ON Z SPECIFICATIONS 

Duke and Smith in [7] mention that properties of a system 
such as liveness can be evaluated by presenting a specification 
of a system using Z notation. There are two alternatives to 
express such properties.  

The first alternative is to express them using Z notation. The 
second one is to express them using temporal logic notation. One 
benefit of using the second alternative is predicates are more 
readable and shorter than the former. 

Supporting that second alternative, King [8] added tags for 
presenting several temporal logics to his Object Z package. 
Currently there are three tags available, as follows: 

 

 : this symbol means always 

 : this symbol means next 

 : this symbol means eventually 

 

Based on their meanings, we assume those three tags represent 
LTL formulas. 

Regardless of research found in [2,3], only fewer tools that 
support embedded temporal theorems in Z specifications. 
Therefore, our research aims to propose extensions to Z standard 
notation adapted by Z2SAL to also include King’s temporal 
logic. 

In our proposal [6], syntax to define the embedded theorems 
is adapted from Object-Z Concrete Syntax [9]. This syntax is an 
extension  to syntax of Spivey [10]. Based on discussion on [6], 
the theorems are defined in the predicate part of schemas.  

We propose several steps of how to translate embedded 
properties on a Z specification [6]. The translation of these 
properties will follow Z2SAL’s form of theorems in SAL 
specifications which have a form as follows:  

 

th i: THEOREM name_of_module |- 
temporal_logics; 
 
 
Our steps are:  

 th is an identifier, so it is possible to modify this 
identifier’s name to other identifier’s name.  

 Every th is followed by i. An i is a non-zero natural 
number starting from 1, which plays as an index. This i 
number will be given for every line of predicates 
containing temporal logics which begins with 1 and this 
number will be incremented by 1 for each successor of 
such a line. The i is also part of the user identifier, so it 
can be modified to other identifier.   

 THEOREM is a SAL keyword, but it is not case-sensitive.  

 name_of_module is taken from the name of the SAL's 
module and is case-sensitive. 

 

As said in [6], King’s style for representing temporal logics 
are different with temporal logics of SAL specifications. 
However, there are equivalences between both syntaxes. The 
table has been given in [6] which shows these equivalences 
(please refer to Table 3.1). From the table, SAL has G for 
representing always, X for representing next, and F is for 
eventually. 

For representing U(p,q), which is not supported in King’s 
syntax, we have given the equivalent notation for U(p,q) in 
[6]. U(p,q) means that p holds until q holds on a particular path 
[4]. 

The next discussion gives one example of schema that 
represents a theorem from our experiments in [6] relating to this 
proposed translation method. The example is taken from [10] 
namely Birthday Book Specification.  

As mention in [6], the property that need to be proven is “If 
it is known the birthday of a person then the person should be 
recognized”. This schema has a predicate part that represent that 
property. It begins with a universal statement, thus for all person 
in this birthday book (we take their names), there will exist one 
unique date of birth for each person (it is represented by an 
existential statement). The schema that is defined is as follows 
[6]: 

 WhichDate  

ΞBirthdayBook 
 

∀n: NAME ⦁  ∃d: DATE ⦁   

 (d = birthday(n) ⇒  n ∈ known) 
 

 

After the complete specification is translated by Z2SAL, the 
generated SAL specification for the above schema is as follows: 

 

 

Figure 1 A SAL translation for the above embedded theorem 

 

This theorem in Fig. 1 is VALID, in other word; it is satisfied by 
the system. The command that is given to SAL model checker 
to verify the above embedded theorem is as below: 

 

$ sal-smc birthdaybook_templog 

 

We specify a new theorem for this paper that we also 
embedded in the same Z specification as above. Thus theorem 
in not available in [6]. This theorem represents “if there is a 
birthday date for someone, it means that this person is already in 
the system which means that the name is not a new name. In 
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other word, only one name is recorded for one date. The theorem 
is as follows: 

 JustOnePerson  

ΞBirthdaybook 

newName?: NAME 
 

∀n: NAME⦁ ∃d:DATE⦁  

(d = birthday(n) ⇒  newName? = n) 
 

 

Z2SAL generates a SAL theorem as follows: 

th2 : theorem State |- (FORALL (q__4 : NAME) 
: (EXISTS (q__5 : DATE) : G (q__5 = 
birthday(q__4) => newName? = q__4))); 

 

We model check the SAL specification then. The command 
given to SAL model checker and results are as follows: 

 

$ sal-smc birthdaybook_templog 

 

Summary: 

The assertion 'th1' located at [Context: 
birthdaybook_templog, line(71), column(2)] 
is valid. 

The assertion 'th2' located at [Context: 
birthdaybook_templog, line(74), column(2)] 
is valid. 

 

birthdaybook_templog is the name of the context file 
which represents the name of SAL file.  Thus, we use symbolic 
model checker of SAL model checker and we use LTL formulas. 
The first theorem uses a LTL operator, namely G. This operator 
means its argument is always true. It is similar to the second 
theorem; this theorem uses also the same LTL operator, G.  

Based on result given by model checking the second 
theorem, we could assume that this birthday book system only 
specifies one date of birthday for one person. Thus, it does not 
support if there are many persons have the same birthday date. 
This behavior is quite surprising, it is not usual.  

 

IV. RESULT AND DISCUSSION 

Our complete results from experiments in this proposal are 
given in [6]. Interested readers are encouraged to read that paper. 
We could obtain the translations of theorems, which are 
embedded in Z specifications. Z2SAL are able to perform 

translation over these embedded theorems. We also could model 
check the generated SAL specifications using SAL model 
checker. Thus, SAL model checker seems that it does not 
differentiate the theorems, which are defined directly in the Z 
specification from the ones, which are defined in the SAL 
specification.  For the discussion about the last paragraph in the 
previous section, to allow shared birthday date among person, 
the Z specification seems to be revised.  

 

V. CONCLUSION 

There are six experiments which have been conducted in our 
research and written in [6]. We reported again one of those 
experiments in this paper. In addition to this experiment, we add 
our new example for this paper. Thus, there are two experiments 
in this paper. Based on these experiments, we conclude that 
Z2SAL supports embedded theorems in Z specifications. It is 
because Z2SAL can translate these theorems into the 
equivalence theorems in SAL specifications. These theorems 
can also be verified by SAL model checker. Furthermore, many 
persons who share the same birthday date could be assigned as 
future research. 
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